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Abstract

Microcystin (MC) peptides produced by cyanobacteria pose a hepatotoxic threat to human health 

upon ingestion from contaminated drinking water. While rapid MC identification and 

quantification in contaminated body fluids or tissue samples is important for patient treatment and 

outcomes, conventional immunoassay-based measurement strategies typically lack the specificity 

required for unambiguous determination of specific MC variants, whose toxicity can significantly 

vary depending on their specific structures. Furthermore, the unambiguous identification and 

accurate quantitation of MC variants using tandem mass spectrometry (MS/MS) based methods 

can be limited due to a current lack of appropriate stable isotope-labeled internal standards. To 

address these limitations, we have systematically examined here the sequence and charge state 

dependence to the formation and absolute abundance of both ‘global’ and ‘variant specific’ 

product ions from representative MC-LR, -YR, -RR and -LA peptides, using higher energy 

collisional dissociation (HCD)-MS/MS, ion trap collision induced dissociation (CID)-MS/MS and 

-MS3, and 193 nm ultraviolet photodissociation (UPVD)-MS/MS. HCD-MS/MS was found to 

provide the greatest detection sensitivity for both global and variant specific product ions in each 

of the MC variants, except for -YR where a variant specific product uniquely formed via UPVD-

MS/MS was observed with the greatest absolute abundance. A simple methodology for the 

preparation of 18O-stable isotope-labeled MC reference materials for use as internal standards was 

also developed, and their utility demonstrated for the absolute quantification of MC-LR present in 
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human urine samples, using capillary scale liquid chromatography coupled with ultra-high 

resolution / accurate mass spectrometry and HCD-MS/MS.

Introduction

Microcystins (MC) are a class of nonribosomal peptides produced as secondary metabolites 

by a range of cyanobacteria species found in freshwater and brackish systems worldwide [1]. 

Algal blooms that arise from a combination of eutrophic conditions and favorable water 

temperatures can result in MC levels that pose a hepatotoxic threat to aquatic wildlife [2, 3], 

domestic animals [4, 5] aquaculture enterprises [6, 7] and to human health upon ingestion of 

contaminated drinking water [8, 9]. The threat to human health is of particular concern, with 

dose-dependent effects ranging from gastrointestinal distress to severe neurological and liver 

damage. The possibility of increased risk of cancer as an additional consequence of MC 

ingestion has also been suggested from several studies reporting a statistical correlation 

between the incidence of cancer and the occurrence of toxic cyanobacterial populations 

within the geographical vicinity. However, further evidence is currently limited due to 

challenges associated with the accurate measurement of exposure to specific MC variants 

[10, 11, 12].

The general structure of MC peptides consist of a cyclic, seven amino acid backbone 

characterized by an unusual β-amino acid, (2S,3S,8S,9S,4E,6E)-3-amino-9-methoxy-2,6,8-

trimethyl-10-phenyl-4,6-decadienoic acid (ADDA) that is common to MC [13], nodularin 

[14] and motuporin [15] peptides (Figure 1). Two variable L-amino acids are found at 

positions 2 and 4, and are represented as a two letter suffix that forms the basis of MC 

nomenclature. The remaining residues are considerably more conserved in nature and 

usually include an N-methyldehydroalanine (MDHA), D-Ala and two acidic residues, D-

MeAsp and D-Glu attached to the peptide backbone via their respective β- and γ- side chain 

carbon atoms. Both proteinogenic and non-proteinogenic substitutions at residues 2 and 4 

have been identified in at least 21 known primary analogues [1], however methylation or 

demethylation at those and several other positions provide a major source of structural 

diversity from which over 90 congeners have been identified to date [16]. Finally, despite the 

highly conserved nature of the ADDA residue, hydroxyl [17] and acetoxyl [18] variations 

have also been recorded in addition to the 6(Z)-ADDA stereoisomer [19].

The structural elements of MC peptides that are important to toxicity have been identified, 

particularly through early studies that have examined the relationship between MC variants 

and their effect on animal cells [20, 21, 22, 23]. While the hepatic specificity of MC’s results 

from covalent attachment of protein phosphatases 1 and 2A to the MDHA methylene group 

(residue 7), the major toxicological determinants have been identified as being due to the 

presence of a hydrophobic residue at position 2, the free α-carboxylate on the D-Glu residue 

and the E-stereoisomeric configuration at the C-7 position of ADDA since the absence of 

any one of these features results in a significant decrease in toxicity [17, 19, 24].

Multiple approaches for the detection of MC’s have been used over the past three decades, 

ranging from toxicological screening to the isolation and identification of specific MC 

congeners. Protein phosphatase inhibition- and immuno-assays exhibit high sensitivity 
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towards MC’s, but both methods are generally limited by a lack of specificity [25, 26]. More 

detailed characterization has been provided by liquid chromatography-mass spectrometry 

(LC-MS)-based approaches, with low resolution triple quadrupole analyzers employing 

Selected Reaction Monitoring (SRM) methods, or linear ion trap analyzers, that provide 

characteristic product ion spectra for a range of MC variants [27, 28, 29, 30]. Although not 

yet widely explored for MC identification and characterization, the more recently developed 

HCD-MS/MS based Parallel Reaction Monitoring (PRM) technique [31] is of particular 

interest for MC identification and quantification from within complex biological matrices, 

due to its ability to provide comparable sensitivity, linearity, dynamic range and quantitative 

precision to SRM-CID-MS/MS methods, but with the potential for higher specificity due to 

acquisition of full MS/MS spectra under high resolution and accurate mass conditions. 

Ultraviolet photodissociation is also increasingly employed as an alternative ion activation 

method for MS/MS-based peptide and protein analysis [40,41,46], including for proteomics 

[42] and phosphoproteomics [43], intact proteins [44] and native protein complexes [45], 

and for the localization of backbone deuteration in peptide hydrogen-deuterium exchange 

mass spectrometry studies [47]. To date, however, no studies on the UVPD-MS/MS 

fragmentation behavior or identification/characterization of cyclic peptides (including MC 

peptides), have been reported.

Finally, traditional methods for the quantification of MC’s have relied on absorbance 

spectroscopy based immunoassay detection [32, 33], but can lack specificity for individual 

MC congeners. Furthermore, as stable isotope-containing internal standard reference 

materials of MC peptides are commercially unavailable, mass spectrometry based 

quantitation methods typically rely on the use of analogous molecules such as nodularin as 

internal standards in complex biological matrices, or employ unlabeled MC’s for use in 

standard addition methods or to generate external calibration curves [34]. However, these 

methods require multiple analyses, or necessitate the use of labor-intensive, matrix-

background correction.

Materials and Methods

Materials.

MC-LR, -YR, -RR and -LA peptides (>90 % purity) were purchased from Boc Sciences 

(New York, USA). Note that MC’s are toxic substances that may be harmful if inhaled or 

absorbed through the skin, or fatal if ingested. Thus, these substances should be dispensed in 

a fume-hood and using appropriate personal protective equipment. All solvents used were of 

UV spectroscopic grade or higher. Trifluoroacetic acid (TFA, 99%) was obtained from 

Auspep (Tullamarine, Australia). Formic acid (FA, 99%) was from Ajax Chemicals (Taren 

Point, Australia).

Preparation of microcystin peptide standard solutions.

MC-LR was prepared at a concentration of 1 µg/µL in methanol based on the quantity 

indicated by the supplier. Solutions of the remaining MC-YR, -RR and -LA peptides were 

normalized to this concentration, based on their relative UV absorbance at 214 nm during 

RP-HPLC. RP-HPLC was performed using an Agilent 1200 series HPLC (Santa Clara, CA) 
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equipped with a UV detector (model G1365B) and a Grace VisionHT C18 2.1 × 50 mm, 3 

μm column. All peptides were dissolved in 2 % MeCN / 0.1 % FA and centrifuged prior to 

loading. Peptide separation was achieved using a two-step linear acetonitrile gradient from 

2–25 % B in 5 min and 25–60 % B in 35 min (Buffer A: 0.1 % TFA; Buffer B: 95 % 

MeCN / 0.1 % TFA) at a flow rate of 0.25 mL/min.

Capillary LC-ESI-MS and HCD-MS/MS.

Analysis was performed by capillary LC-nESI-MS and HCD-MS/MS using an Agilent 1200 

Infinity Binary LC System (Santa Clara, CA) coupled to a Thermo Scientific Q Exactive 

Plus Orbitrap mass spectrometer (Breman, Germany). MC peptides were prepared at various 

concentrations in 2 % MeCN / 0.1 % FA, then 8 µL loaded onto a Magic AQ C18, 3 µm, 200 

Å, 25 × 0.15 mm IntegraFrit Sample Trap Column (Bruker, Billerica, MA) for 5 min at a 

flow rate at 2 μL/min. Elution and separation was performed using a Magic AQ C18, 3 μm, 

200 Å, 105 × 0.15 mm PicoChip Column (Bruker, Billerica, MA) using a two-step linear 

acetonitrile gradient from 2–25 % B in 5 min and 25–60 % B in 35 min (Buffer A: 0.1 % 

FA; Buffer B: 95 % MeCN / 0.1 % FA) at a flow rate of 0.8 µL/min. Full MS scans were 

acquired at m/z 300–2000 with a spray voltage maintained at 2.7 kV, an S-lens setting of 

60 % and the ion transfer tube set at 300 °C. Data was recorded at a mass resolving power of 

70,000. The maximum injection time was set at 100 ms with an AGC target value of 1.0 × 

106. HCD-MS/MS scans were obtained at a resolution of 17,500 with an AGC target value 

of 1.0 × 106 and an isolation window of 0.8. Evaluation of Normalized Collision Energies 

(NCS’s) for the optimized identification of both ‘global’ and ‘variant-specific’ MC product 

ions was performed by energy resolved HCD-MS/MS of each peptide, using repeated 

injections.

Ion trap CID-MS/MS and MSn.

Linear ion trap ESI-CID-MS/MS and -MSn experiments were conducted on a Thermo 

hybrid linear quadrupole Fourier Transform-Ion Cyclotron Resonance (LTQ FT-ICR) mass 

spectrometer (Breman, Germany) operating in positive ionization mode. Each MC peptide 

was prepared in 50% MeCN / 0.1% FA and injected by direct infusion. The spray voltage 

was maintained at 1.45 kV, while the capillary voltage and temperature was 9 V and 200 °C, 

respectively. Full-scan mass spectra were acquired over an m/z range from 100–1100. CID-

MS/MS and -MS3 experiments were performed on monoisotopically-isolated precursor ions 

using Q values of 0.25 for singly charged precursor ions and 0.17 for doubly charged 

precursor ions.

193 nm UPVD-MS/MS

193 nm UVPD MS/MS was performed on a custom modified Thermo Scientific Q Exactive 

Orbitrap mass spectrometer using a Coherent ExciStar XS ArF excimer laser (Santa Clara, 

CA), as previously described by Ryan et al [35]. MC peptides were introduced to the mass 

spectrometer via nanoESI (nESI) using an Advion Triversa Nanomate (Advion, Ithaca, NY). 

Precursor ions were isolated using an isolation window of ± 0.5 m/z. The AGC target was 

maintained at 1 × 106 and the maximum ion injection time was set to 500 ms. The laser 

power and number of laser pulses for UVPD-MS/MS of each peptide were optimized for 

formation of the most abundant ‘global’ or ‘variant specific’ product ion, during which the 
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HCD collision energy was set to 1 eV. Control over the ion trapping time, and the HCD 

collision energy (i.e., below the default value of 10% NCE), was achieved using custom 

software patches within the mass spectrometer control software. UVPD-MS/MS spectra 

were acquired in the Orbitrap mass analyzer using a mass resolving power of 70,000 (at m/z 

400).

Preparation of 18O2-containing microcystin peptides and characterization by Capillary LC-
ESI-MS/MS.

MC-LR, -RR, -LA (400 µg) and -YR (80 µg) were individually dissolved at 1.25 µg/µL in 

5 % TFA / H2
18O (97 atom %), then extensively sonicated, vortexed, and allowed to sit at 

room temperature. Progress of the reaction was monitored at different time points by 

centrifugation of the reaction mixture followed by removal of 1 µL, which was diluted with 

2 % MeCN / 0.1 % FA then analyzed by capillary LC-nESI-MS as outlined above. 

Following satisfactory 18O2 incorporation (after 48 hr), 4 µL aliquots from the reaction 

mixture were immediately dispensed into 500 µL Eppendorf tubes and evaporated to dryness 

by centrifugation under reduced pressure. Dried aliquots were stored at −80 °C. A dried 

aliquot from each of the four reaction products was then dissolved in 2 % MeCN / 0.1 % FA 

using sonication and vortexing, then analyzed by capillary LC-nESI-MS/MS immediately 

following their preparation, or after 24 hr at room temperature to determine the extent of any 
16O-back exchange.

Identification and absolute quantitation of Microcystin-LR in human urine.

A 1 mg/mL stock solution of MC-LR in methanol was diluted, using urine from a healthy 

volunteer in compliance with U.S. 45-CFR 46.102(i), to a final concentration of 1 μg/L. A 

Nanosep® 3K Omega Centrifugal Device was conditioned with 0.08 N NaOH, washed with 

Milli Q then 500 μL of the MC-LR spiked urine sample was centrifuged at 3000 rpm until 

half of the volume remained. The filtrate was acidified with formic acid (5 µL) to pH 2.1 

then the entire filtrate volume was extracted through an Oasis HLB 10 mg Extraction 

Cartridge using 95 % MeCN / 0.1 % FA as the eluent (5 × 80 μL). The eluent was then 

evaporated by centrifugation under reduced pressure and the resultant dried sample 

dissolved in 1 mL of 2 % MeCN / 0.1 % FA. 100 μL of this solution was diluted with 2 % 

MeCN / 0.1 % FA, then 8 μL was analyzed by capillary LC-nESI-MS and HCD-MS/MS 

according to the procedure outlined above.

Microcystin MS/MS fragmentation nomenclature.

In the absence of a universally accepted nomenclature system for cyclic peptide 

fragmentation, MC product ions resulting from amide bond cleavages have been labeled 

according to the residues that each product ion contains, along with the molecular weight or 

molecular formula of any additional fragments within the parenthesis.
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Results and Discussion

Identification, characterization and detection sensitivity optimization of microcystin 
peptides by capillary LC-ESI-MS and HCD-MS/MS.

Prior to evaluation and optimization of MS/MS fragmentation conditions, the 

chromatographic and electrospray ionization behavior of four commercially-available 

microcystin variants, MC-LR, -YR, -RR and -LA were determined. An equimolar mixture 

containing the four MC peptide standards was prepared and confirmed by RP-HPLC using 

UV detection (Supplementary Figure S1A). This mixture was then analyzed by capillary 

LC-nESI-MS which revealed significant differences in their ionization potentials across 

almost two orders of magnitude (Supplementary Figure S1B), and charge state distributions 

(insets to Figure 2A and Supplementary Figures S2A-S4A), correlating with the basicity of 

the peptide side chains in the order RR>YR≈LR>>LA.

Next, the HCD-MS/MS fragmentation characteristics of each of the observed charge states 

from the four MC variants were examined. Two types of product ions, along with the 

accurate mass of the precursor, are important for unambiguous identification of an unknown 

MC congener. The first are those formed from a common structural feature of MC peptides, 

that serves as a ‘global’ identifier under a variety of fragmentation conditions. The second 

type is ‘variant-specific’ and includes only one of the variable residues at position 2 or 4 

within the cyclic peptide sequence. The latter category is particularly important in view of 

the potential for each of these residues to be positionally isomeric in a naturally occurring 

sequence, the result of which is two variants of identical m/z, such as the case for MC-

LR/RL and -YR/RY [36], particularly for those exhibiting similar chromatographic retention 

behaviors.

A representative HCD-MS/MS product ion spectrum for the [M+2H]2+ precursor ion of the 

MC-LR variant (Figure 2A) is dominated by a product ion at m/z 135.08 [Ph-CH2-

CH(OMe)+], and its corresponding neutral loss at m/z 861.48, characteristic of cleavage 

occurring within the ADDA side chain (labeled in blue text, and shown in Figure 1). The 

m/z 135.08 product ion has previously been described in the literature as a major product 

generated under collisional activation conditions, and serves as a ‘global’ product ion for 

MC-specific identification due to the presence of this amino acid in all MC variants [27]. 

This product was also prevalent in the spectrum acquired from the [M+H]+ precursor ion (a 

representative spectrum is shown in Figure 2B), albeit at lower relative abundance. In 

addition, several ‘variant-specific’ MC-LR product ions containing either residues 2 or 4 

(e.g., [3,4,5,6,7,1+H]+, [4,5,6+H]+, [7,1,2,3+H]+ and [7,1,2+H]+ labelled in red text - also 

see Figure 1) were also observed in either or both of the doubly- and singly-charged 

precursor ions. Note that while several other product ions (e.g., [6,7+H]+, [7,1+H]+ and 

[5,6,7–134-NH3+H]+ in Figure 2B) were observed with greater relative abundances, only the 

variant-specific product ions provide the required structural information for differentiating 

this MC-LR variant from other possible isomers. In order to optimize the detection 

sensitivity for the ‘global’ and ‘variant specific’ product ions, MS/MS spectra were acquired 

under a range of HCD normalized collision energies, to determine the conditions that give 

rise to each of these products at their maximum absolute abundances. The results are 
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summarized in Table 1. HCD-MS/MS of the MC-YR peptide resulted in almost identical 

product ion spectra to those observed for MC-LR, indicating that substitution of leucine for 

tyrosine in position 2 has little effect on the overall fragmentation behavior (Supplementary 

Figure S2). For both peptides, the optimized absolute abundance of the ‘global’ m/z 135.08 

product ion was observed to be highest for the doubly-protonated precursors. However, the 

most abundant ‘variant-specific’ (4,5,6+H)+ product ion was observed from dissociation of 

the singly protonated precursors (up to two fold higher absolute abundance than the most 

abundant ‘variant-specific’ (3,4,5,6,7,1+H)+ product ion from the doubly-protonated 

precursors) (Table 1), despite the significantly lower relative abundance of the singly 

protonated precursor ions.

HCD-MS/MS of the MC-RR precursor ions yielded spectra that were overall similar to 

those from the MC-LR and MC-YR peptides (Supplementary Figure S3). While the ‘global’ 

ADDA side chain product at m/z 135.08 was again observed as the base peak in both cases, 

and was highest in absolute abundance from the doubly-protonated precursor ion, the 

doubly-protonated precursor was observed to provide a ‘variant-specific’ product ion (i.e., 

(7,1,2,3+H)+) with almost two orders of magnitude greater absolute abundance compared to 

the (4,5,6+H)+ ion from the singly-protonated precursor (Table 1). This is rationalized as 

being due to the dominance of the doubly charged precursor ion for this peptide owing to the 

presence of the additional basic Arginine residue. Finally, HCD-MS/MS of the MC-LA 

peptide from its singly-protonated precursor ion also yielded the global ADDA fragment at 

m/z 135.08 as the base peak signal, along with various ‘variant-specific’ product ions with 

significant relative abundances (Supplementary Figure S4). The low abundance of the 

doubly charged precursor for the MC-LA peptide dictated that all fragmentation information 

was obtained from the [M+H]+ ion, for which the [7,1,2+H]+ product was found to have the 

highest optimized absolute abundance (Table 1). In general, fragmentation of the MC-LA 

peptide required considerably lower collision energy than the other peptides, consistent with 

its increased proton mobility in the absence of a basic Arginine residue [37].

Microcystin analysis by linear ion trap MS/MS and MS3.

Having optimized the HCD-MS/MS parameters, the fragmentation behavior of the MC 

peptides were also explored under linear ion trap CID conditions, in order to determine if 

any further possible signal enhancement for detection of ‘variant-specific’ product ions 

would be obtained using this subtly different ion activation process. CID-MS/MS of the MC-

LR [M+H]+ precursor ion yielded the [4,5,6+H]+ ion as the ‘variant specific’ product with 

the highest absolute abundance, similar to that for HCD-MS/MS, but observation of the 

ADDA fragment ion was excluded due to the low mass cutoff of the instrument (Figure 3A). 

MS/MS of the [M+2H]2+ precursor ion resulted in a dominant non-structurally diagnostic 

loss of methanol at m/z 482.3, along with the ‘global’ ADDA diagnostic product at m/z 

135.08, and products formed via neutral or charged losses of the ADDA side chain at m/z 

431.3 and m/z 861.5, respectively (Figure 3B). Due to the overwhelming dominance of these 

fragmentation pathways, essentially no ‘variant specific’ product ions were observed from 

this spectrum. However, CID-MS3 of the m/z 482.3, m/z 431.3 and m/z 861.5 ions from 

Figure 3B (Figures 4A-C, respectively) yielded significantly abundant structurally diagnostic 

‘variant specific’ product ions (e.g., [4,5,6–134+H]+) only for the m/z 431.3 ion, albeit with 
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a similar absolute abundance to the equivalent [4,5,6+H]+ product ion obtained by CID-

MS/MS of the singly protonated MC-LR precursor in Figure 3A. Analyses of the MC-YR, -

RR and LA peptides also gave similar results (data not shown). These results are consistent 

with several previous studies that have employed linear ion trap ESI-MS and CID-MSn for 

the characterization of MC peptides [27, 38, 39]. However, as no gain in either absolute 

sensitivity or structural information was provided by using CID-MS/MS or -MS3 compared 

to HCD-MS/MS, this approach provides no benefit for use in the identification of MC 

peptides at low concentrations in complex mixtures, particularly when performed on stand-

alone ion traps where high resolution and accurate mass analysis is not available.

Microcystin analysis by 193 nm UVPD-MS/MS.

193 nm UVPD-MS/MS of the singly and doubly protonated precursor ions of the MC-LR 

and -RR peptides, the doubly protonated precursor ion of the -YR peptide, and the singly 

protonated precursor ion of the -LA peptide, each yielded spectra that were qualitatively 

similar to that observed by HCD-MS/MS, albeit with subtle differences in their relative ion 

abundances (Supplementary Figure S5-S8). This is consistent with results from recent 

literature reports comparing the UVPD- and HCD-MS/MS of linear peptides on a 

‘proteome-wide’ scale [40]. However, the absolute abundances of both the UVPD-derived 

global product ion at m/z 135.08 (or its neutral loss [M-134+H]+ product ion) and the 

variant specific product ions, for these peptides were found to be only approximately half 

that compared to HCD. This is likely due to the inability to limit secondary 

photodissociation of these product ions when multiple laser pulses are used to efficiently 

dissociate the intact precursor ion using the current configuration for UVPD in our custom 

modified Q Exactive mass spectrometer.

In contrast, UPVD-MS/MS of the singly protonated precursor ion of the MC-YR peptide 

gave rise to a series of abundant and unique variant specific product ions formed by neutral 

loss of the tyrosine side chain (C7H8O, m/z 803.4053) at residue 2, along with further 

sequential losses of CO2 and CONH (m/z 759.4153 and 716.4094, respectively), after initial 

loss of the ADDA side chain (Figure 5). These ions are likely formed due to direct 

absorption of the 193 nm photons at the aromatic tyrosine residue, leading to preferential 

cleavage via a charge remote fragmentation pathway due to the ‘non-mobile’ condition of 

the singly protonated peptide. Notably, the m/z 803.4053 and 759.4153 ions were observed 

with an absolute abundance approximately twice that of the most abundant variant specific 

[4,5,6+H]+ product ion observed by HCD, indicating that the use of UPVD-MS/MS would 

provide a two-fold increase in the limit of detection for this MC variant. These data, albeit 

preliminary and requiring further optimization of the mass spectrometry hardware and data 

acquisition conditions for more efficient photodissociation, are indicative of the potential 

utility for UVPD ion activation methods to provide comparable or increased structural 

information for certain MC peptides.

Development of 18O-stable isotope labelled microcystin reference materials for use as 
internal standards.

The quantification of microcystins in contaminated biological fluids or tissue ideally 

requires stable-isotope containing standards that can be added directly to the matrix under 
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investigation, thereby providing a direct comparative measurement of the concentrations of 

the endogenous material. Several approaches for isotope incorporation are available, 

including synthetic, conjugative or by exchange reaction with the intact molecule. While the 

synthetic route involves straightforward coupling of 13C- or 14N-containing amino acids, a 

major difficulty lies in preparation of the ADDA amino acid which contains four chiral 

centers, representing a significant synthetic undertaking [48, 49]. Thus, chemical synthesis 

methodologies for MC standards are time and economically impractical since the 

measurement of endogenous MC congeners would require the separate synthesis of each 

variant. A simpler method was therefore first examined in which a labeled molecule was 

conjugated to the intact MC peptide. Based on established methods for Michael addition of 

thiols to the MDHA methylene group of MC’s [25, 36], we examined the utility of this 

approach to incorporate various alkyl amines into MC-LR, using only water as the solvent 

[50]. Unfortunately, while high reaction efficiencies were observed, LC-MS/MS analysis of 

reaction products from the conjugation of ethanolamine, 3-aminopropanol or n-butylamine 

to MC-LR showed that the major transition involved β-elimination of the conjugated side 

chain, which effectively suppressed the detection sensitivity of the isomer-specific product 

ions (data not shown). In view of this shortcoming, a more convenient, universally 

applicable approach was sought. Recent literature reports have described acid-catalyzed 
18O-exchange from H2

18O into intact linear peptides under a variety of conditions [51, 52, 

53]. Using 18O as an isotopic tag provides a maximum of four possible positions for 18O 

exchange within the typical MC structure. Hydrochloric acid has been identified as the 

preferred catalyst on the basis of reaction rate, volatility and the absence of exchangeable 
16O atoms that would lead to contamination of the exchange mixture with H2

16O [51]. 

Following the preparation of a saturated HCl / H2
18O (97 atom %) solution according to a 

literature procedure [51], treatment of the MC-LR peptide resulted in complete degradation 

of the starting material within 6 hours, with none of the desired product detected by LC-MS 

(data not shown). As an alternative therefore, TFA was considered as a milder acid catalyst. 

Although studies describing TFA concentrations above 20 % (v/v) report significant peptide 

hydrolysis and a reduced rate of 18O exchange, it was envisaged that lower concentrations 

with longer reaction times would provide higher purity products [51].

MC-LR samples were treated with solutions containing H2
18O (97 atom %) and TFA at 

either 2.5 % or 5 % (v/v) concentrations and monitored by LC-MS at 24, 48, 72 and 96 hr 

time points, at room temperature. As shown in Table 2, the 18O-exchange reaction proceeded 

smoothly at both concentrations, albeit with a considerable decline in isotopic exchange rate 

following the incorporation of two 18O atoms [m/z 999.6 (M+H+18O2)+]. The use of 

heterogeneous acid mixtures such as 2.5 % TFA / 9 % HCl / H2
18O (97 atom %), or heating 

to 50°C, resulted in a shift in isotopic distribution towards the 18O3 [m/z 1001.6 (M

+18O3+H)+] and 18O4 [m/z 1003.6 (M+18O4+H)+]-containing peaks but was accompanied 

by significant peptide hydrolysis (data not shown). In light of this result, the doubly 

exchanged 18O2-containing peptide was therefore identified as the appropriate isotope for 

use as a labeled reference standard. The major criterion for a stable isotope-labeled reference 

is that it contains a sufficient mass shift from the native compound to enable accurate 

quantification of the resulting isotopic doublets during co-analysis of the labeled and 

unlabeled compounds in an unknown mixture. The exchange of two 18O atoms provides a 4 
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Da increase in molecular weight which satisfies this requirement. As shown in Table 2, the 

optimal abundance of the doubly exchanged, 18O2-containing MC-LR peptide occurred after 

48 hr in a 5 % TFA / H2
18O (97 atom %) solution, or after 72 hr in the 2.5 % TFA / H2

18O 

(97 atom %) mixture. In both cases, the doubly-exchanged peak was the major product, with 

minimal starting (i.e., unlabeled) peptide remaining, and with only minor byproducts 

detected upon LC-MS analysis. Thus, while both of these final products are suitable for use 

as an internal reference compound, the 5 % TFA / H2
18O (97 atom %) solution was chosen 

as the preferred exchange mixture due to the faster reaction time.

Treatment of the four commercially available MC-LR, -YR, -RR and -LA variants with a 

5% TFA / H2
18O (97 atom %) solution for 48 hr (Table 3) gave similar 18O- exchange levels 

to that observed for MC-LR. While only minor differences were seen in the isotopic 

distributions of MC-YR and MC-LA, which showed slight increases in the 18O3-exchanged 

isotope, the doubly-exchanged isotope was the dominant product in all cases along with 

near-complete consumption of the starting material. The propensity for 18O → 16O back 

exchange in each MC variant was then examined by dissolution of dried aliquots of the 18O-

exchanged peptides in 2 % MeCN / 0.1% formic acid (pH 2.1) for 24 hr. Notably, no 

significant change in relative isotopic intensity of the 18O2-containing signal was observed 

(Table 3), demonstrating that back-exchange does not occur under these conditions (i.e., 

exceeding the conditions to which the reference compounds would be exposed during 

sample preparation and analysis when used as internal standards), and therefore would not 

potentially contribute to over-estimation of endogenous MC’s. These results are consistent 

with literature accounts that describe similar observations of 18O-labeled peptide stability in 

either 0.1% or 5% formic acid solutions [51, 52, 53].

Characterization of the 18O2-containing product ions in each MC peptide by HCD-MS/MS 

revealed a 4 Da increase in all D-Glu (residue 6)-containing products, but surprisingly no 

increase in product ions containing D-MeAsp (residue 3) in the absence of D-Glu (Figure 6). 

Intramolecular bonding between Arg4 and MeAsp3 was eliminated as a possible reason for 

the MeAsp resistance to 18O-exchange, since the Arg-deficient, MC-LA showed the same 

bias toward the D-Glu-directed exchange (data not shown). Although substrate-dependent 

exchange rates have been reported for peptides in general [53], this unexpected result greatly 

simplifies the resultant fragmentation, allowing well-defined characterization of each MC 

variant based on their 18O2-containing isotope containing product ions. The availability of 

stable isotope-containing MC’s therefore enables their direct addition as internal standards 

into biological fluids, avoiding the requirement for labor-intensive, matrix-corrected solvent 

calibration [54]. Furthermore, the generation of any 18O-labeled MC variant requires only 

the propagation and harvest of the cyanobacteria responsible, from which the required MC 

can be isolated. In unusual cases such as MC’s that contain an esterified D-Glu residue, 

preclusion of the 18O-exchange method is not critical from a health perspective since such 

glutamyl variations display very low toxicities [29] such that the detection of these peptides 

represents a much lower medical priority.
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Detection and Absolute Quantitation of Microcystin-LR in human urine.

Following characterization of the MS/MS fragmentation behavior of the MC-LR, -YR,-RR 

and -LA peptides, only the accurate m/z values of the precursor ion, the global identifying 

ADDA fragment and the variant-specific product ion(s) of highest absolute abundance 

(using the optimized HCD (or UVPD) -MS/MS NCE values for each ion) are required for 

identification of these congeners at low concentrations in unknown mixtures. While the 

detection of multiple transitions is not required, additional fragments may be used to 

enhance identification specificity in mixtures of higher concentrations as their abundances 

become greater than their respective limits of detection. In addition to the targeted 

identification of the four major MC congeners, this approach also allows the identification of 

unknown variants since the masses of structurally characteristic product ions formed from 

MC variants containing subtle structural variations may be readily predicted by comparison 

with the established fragmentation spectra from the current study. Importantly, various 

changes to the MC structure, such as amino acid residue substitutions in more conserved 

regions, or a methylated/demethylated variant(s), will not dramatically change the general 

fragmentation pattern, as suggested by the similar features of the MC-LR, -YR, -RR and -

LA product ion spectra. For example, HCD-MS/MS identification of a desmethyl-MC-LR 

variant, which lacks the methyl group attached to the β-carbon of the D-MeAsp residue at 

position 3, would proceed via initial assignment of the global ADDA fragment ion at m/z 

135.08, along with observation of [3,4+H]+ and isomer-specific [7,1,2,3+H]+ product ions 

that also reflect the loss of the methyl group. Since only residue 3 is common to each of 

these fragments, the de-methylated modification could be isolated to this location, thereby 

providing the exact identity of the unknown MC variant. This approach may also be applied 

to the elucidation of primary sequence variations in the more conserved regions of the MC 

structure, not only via the observation of isomer-specific product ions, but also by accurate 

mass assignment of abundant non-specific products such as the [6,7+H]+, [7,1+H]+, 

[7,1,2,3,4+H]+, and [5,6,7–134-NH3]+ product ions (Figure 2).

With regard to the detection of microcystins at low concentrations, the World Health 

Organization (WHO) has recommended a provisional guideline value of 1 µg/L for MC-LR 

(free plus cell-bound) in drinking water, with a fraction of the unbound toxin accumulating 

in urine, as demonstrated by earlier work in mice [40]. In cases where the urinary MC levels 

approach the limits of detection, it is anticipated that the high sensitivity of the ADDA 

product ion at m/z 135.08 from the doubly charged MC-LR, MC-YR and MC-RR precursors 

will be the transition of highest analytical value, along with the mass and chromatography 

retention time of the intact precursor. From a medical perspective, these MC concentrations 

would undoubtedly be asymptomatic. However, the significance of the more structurally 

informative ‘variant specific’ product ions would become apparent at higher concentrations.

To demonstrate the identification of MC peptides at relevant concentrations in human 

biofluids such as urine, a urine sample from a healthy subject was spiked with MC-LR at 1 

μg/L then processed according to the simple general methodology outlined in Figure 7A 

(also see Materials and Methods), involving initial filtration using a low molecular weight 

cut-off filter followed by solid phase extraction of the protein filtrate prior to LC-MS and 

targeted PRM-MS/MS analysis of the doubly-charged MC-LR peptide. As shown in Figure 
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7B, chromatographic separation of the isolated protein mixture (corresponding to only 0.4 

μL of the original urine sample; i.e., 400 fg of MC-LR) resulted in a large matrix 

background of other endogenous urinary peptides. However, PRM-MS/MS followed by 

extraction of the signal for the ‘global’ ADDA-specific product ion (transition from m/z 

498.3 → m/z 135.1) readily identified the MC-LR peptide at the expected elution time (21.2 

min), with good signal-to-noise (Figure 7C). By comparison of the abundance of this 

transition to that obtained from a post-enrichment spike in control experiment of MC-LR 

(also at 1 μg/L urine) (Figure 7D), the overall enrichment efficiency for the method was 

determined to be 43.5%. Although no other ‘variant specific’ ions were detected in the 

sample at this concentration, the results indicate that the general method developed and 

employed here provides a valid basis for the analysis of free microcystins in human urine at 

concentrations relevant to current guidelines.

Pharmacokinetic studies have demonstrated considerable hepatic retention [55] and 

conjugation of MC peptides to cysteine-containing proteins such as glutathione [56] which 

indicates that initial ingestion of free MC is likely to provide a reduced fraction of unbound 

MC in the resulting urine. While the current study has focused on detection of free MC, an 

extension to this approach that would also enable the detection of bio-conjugated MC could 

be achieved by the inclusion of an enzymatic digestion step prior to filtration. Through the 

judicious use of specific proteases that preclude MC digestion, the resulting microcystins 

that are bound to short, cleaved peptides would be liberated, albeit along with a large array 

of extraneous proteolytically derived peptides from the endogenous proteins. If this increase 

in peptide complexity was found to result in loss of MC detection/quantitation specificity 

during PRM-MS/MS, the addition of an immunoaffinity enrichment step, specific to the 

ADDA functionality, could be used to improve target peptide enrichment prior to solid phase 

extraction and subsequent LC-MS analysis.

Conclusions

By evaluating the use of various ion activation techniques including HCD-MS/MS, CID-

MS/MS and MS3, and 193 nm UVPD MS/MS, the ‘global’ and ‘variant specific’ product 

ions for the identification, structural characterization and absolute quantification of several 

representative MC peptides have been determined. In particular, the variables that give rise 

to structurally-specific HCD-MS/MS and UVPD-MS/MS product ions have been optimized 

to provide the greatest instrumental detection sensitivity, critical for the determination of 

endogenous MC peptides in contaminated biological fluids. Using the methodologies 

described herein, the identification of a range of MC structural variants and their 

biotransformed (conjugated) products can be achieved via simple extrapolation of the 

MS/MS data based on the structural composition of the optimized fragmentation spectra. 

The absolute quantification of microcystins in contaminated urine samples has been 

addressed by the simple acid-catalyzed generation of stable 18O2-containing MC peptides 

which provide a sufficient mass shift from the corresponding native peptides and without 

detrimental back-exchange, enabling their use as internal standards. Finally, the analysis 

methods described herein have been applied toward the identification of the common MC-

LR peptide in human urine, at concentrations relevant to WHO provisional guidelines. 

Based on these results, we anticipate that the analytical methodologies outlined in this study 
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will contribute to the development of improved procedures for the prompt identification of 

ingested MC toxins, and will have utility for expedited prognosis and medical treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of Microcystin-LR, highlighting positions of structural variation in residues 2 and 

4 (boxed) and common sites of methylation/demethylation or bioconjugation (asterisk) in 

microcystin variants. The text highlights the MS/MS cleavage sites and product ion m/z 

values for both global (blue text) and variant specific (red text) microcystin identification 

and characterization.
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Figure 2. 
Representative HCD-MS/MS spectra of (A) the [M+2H]2+ ion (14% NCE) and (B) the [M

+H]+ ion (34% NCE) of Microcystin-LR. The ESI-MS spectrum is shown in the inset to 

panel A. Global microcystin-specific product ions are indicated by a ; variant-specific 

product ions are indicated by a .
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Figure 3. 
Ion trap CID-MS/MS spectra of (A) the [M+H]+ and (B) the [M+2H]2+ ion of Microcystin-

LR. Global microcystin-specific product ions are indicated by a ; variant-specific product 

ions are indicated by a .
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Figure 4. 
Ion trap CID-MS3 product spectra of (A) the [M-135+H]+ ion, (B) [M-MeOH+2H]2+ ion 

and (C) [M-134+2H]2+ ion from the [M+2H]2+ precursor ions of Microcystin-LR in Figure 

3B. Variant-specific product ions are indicated by a .
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Figure 5. 
193 nm UVPD-MS/MS spectra of the [M+H]+ ion (700V, 20 laser pulses) of Microcystin-

YR. Global microcystin-specific product ions are indicated by a ; variant-specific product 

ions are indicated by a .
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Figure 6. 
Representative HCD-MS/MS spectrum of the [M+H]+ ion of 18O2 - stable isotope labelled 

Microcystin-LR (32% NCE). The isotopic distribution of the precursor ion from the MS 

spectrum is shown in the inset. The global microcystin-specific product ion is indicated by a 

; variant-specific product ions are indicated by a . Product ions containing D-Glu but not 

D-MeAsp are indicated by a ∗; product ions containing D-MeAsp but not D-Glu are 

indicated by a •.
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Figure 7. 
Quantitative analysis of Microcystin-LR spiked into urine. (A) Schematic overview of the 

enrichment method. (B) LC-MS profile of the enriched low molecular weight peptide urine 

component, (C) extracted ion chromatogram of the global microcystin-specific ADDA 

product ion at m/z 135.08 from the [M+2H]2+ precursor ion and (D) extracted ion 

chromatogram of the global microcystin-specific ADDA product ion at m/z 135.08 from the 

[M+2H]2+ precursor ion from a post-enrichment spike in control experiment.
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Table 1.

Optimized NCE’s for identification of ‘global’ and ‘variant-specific’ microcystin product ions. Values in bold 

text are the most abundant products from either charge state, for the global (blue) and variant-specific (red) 

product ions. The top value in each row represents the optimal NCE value; the second value is the product ion 

m/z; the third value is the absolute intensity of the product ion, the fourth value (where applicable) is the m/z 

of the 18O2-exchanged peptide product ion.

Product

Optimum Normalized Collision Energy (%)

MC-LR MC-YR MC-RR MC-LA

(M+2H)2+ (M+H)+ (M+2H)2+ (M+H)+ (M+2H)2+ (M+H)+ (M+2H)2+ (M+H)+

(3,4,5,6,7,1+H)+

22 30 22 28 28 28

-

18

882.4701 882.4729 882.4702 882.4704 882.4734 882.4718 797.4062

2.3 E5 5.31 E4 2.6 E5 4.76 E4 6.08 E4 1.62 E4 2.92 E4

886.4784 886.4808 886.4778 886.4790 886.4795 886.4773 -

(3,4,5,6+H)+

18 30 20 28 28 30

-

16

728.3982 728.3984 728.3965 728.3951 728.4007 728.3978 643.3347

6.49 E4 7.78 E4 8.04 E4 9.22 E4 3.33 E5 6.04 E4 3.24 E4

732.4060 732.4061 732.4020 732.4057 732.4059 732.4045 -

(4,5,6,7+H)+ -

30

-

28 28 34

- -
682.3904 682.3923 682.3895 682.3894

5.74 E4 9.48 E4 3.72 E5 8.56 E3

686.3980 686.4109 686.3990 686.3992

(4,5,6+H)+
30 30 28 28 28 32

-
20

599.3534 599.3551 599.3551 599.3545 599.3555 599.3547 514.2912
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Table 2.

Optimization of 18O-exchange reaction conditions for Microcystin-LR

18O - exchange solvent composition Reaction Time (hr) Isotopic intensity (% total)

0 × 18O l × 18O 2 × 18O 3 × 18O 4 × 18O

2.5%TFA/H2
18O (97 atom %) 24 6.9 34.5 46.7 10.9 1.0

48 1.6 18.6 59.8 17.7 2.2

72 0.6 11.6 60.9 23.3 3.7

96 0.5 10.5 55.8 27.9 5.3

5.0%TFA/H2
18O (97 atom %) 24 1.7 18.8 57.7 19.5 2.3

48 0.6 11.4 58.0 25.5 4.5

72 0.5 10.2 51.7 30.6 7.0

96 0.5 9.5 43.7 36.1 10.1
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Table 3.

18O-incorporation into Microcystin-YR, -RR and LA peptides, and monitoring of post-reaction back-exchange 

with 16O.

Solvent composition Microcystin Variant Isotopic intensity (% total)

0 × 18O l × 18O 2 × 18O 3 × 18O 4 × 18O

5.0%TFA/H2
18O (97 atom %) - 48 hr exchange reaction MC-YR 1.2 7.5 47.5 35.0 8.8

MC-RR 0.8 12.8 57.7 24.8 3.9

MC-LA 0.1 6.2 51.5 34.3 7.9

2.0%MeCN/0.1% formic acid - 24 hr post-exchange reaction MC-LR 1.0 10.6 55.7 27.7 5.0

MC-YR 1.3 9.6 47.6 32.5 9.0

MC-RR 0.9 13.9 57.0 24.3 3.9

MC-LA 0.6 10.8 50.0 31.6 7.0
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